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Book Reviews: Two f r o m  Sinai  

Theory of Phase Transitions: Rigorous Results. By Ya. G. Sinai. 
Pergamon Press, Oxford, 1982. 

Ergodic Theory. By I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai. 
Springer Verlag, New York, 1982. 

It is a pleasure to have two such excellent books to review. They deal, 
respectively, with central issues of equilibrium and nonequilibrium statisti- 
cal mechanics. 

1. The phase diagram of a system gives the decomposition of its 
thermodynamic parameter space into regions in which the number of pure 
phases (extremal periodic Gibbs states) is constant. In a series of papers, 
now beautifully described in Chapter 2 of Sinai's book, Pirogov and Sinai 
developed a comprehensive description of the low-temperature phase dia- 
gram for a large class of lattice systems: systems used to model Ising-like 
magnetic transitions as well as coherent transitions in crystalline alloys, i.e., 
ones in which the crystal structure of the alloy remains unchanged. 

The setup is as follows: The system is described by occupation (or 
spin) variables which can take on a finite number of values at each site of a 
d-dimensional regular lattice, d/> 2. The particles can interact with arbi- 
trary finite range periodic potentials, e.g., a spin-1/2 Ising system with one, 
two, and three spin interactions. The Hamiltonian, H 0, has n periodic 
ground states, n finite. There is a nonzero minimum energy per unit 
interface, or "contour," separating two ground states: the Peierls' condition. 

Pirogov and Sinai study the structure of the phase diagram of the 
Hamiltonian H~, 

n 

H. = 14o + (1) 
i~ l  

in the n-dimensional parameter space /~1 . . . .  ,/~,. They prove that at 
sufficiently low temperatures the phase diagram perfectly mimics the topo- 
logical structure of the ground states of / / i , :  There are n-lines emanating 
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from the origin on which H~ has n -  1 periodic ground states, two- 
dimensional surfaces bounded by pairs of these lines on which there are 
n - 2 ground states, etc. 

As an illustration consider the case of a spin--one system on a cubic 
(or other) lattice with nearest-neighbor interactions: 

Ho = J 2 ( Si - Sj ) z, S i = - 1 , 0 , 1 ,  J > 0  
(i , j)  

Then the structure of the phase diagram at zero and low temperatures can 
be obtained from the Pirogov-Sinai theory. It is sketched in Figs. I and 2 .  
The symbols I, II, and III refer in Figure 1 to the ground states S i = - 1 ,  
Si = + 1, and S~ = 0, all i, and in Figure 2 to the corresponding pure 
phases. The bold lines represent phase boundaries. The uniqueness of phase 
III at/*l =/~z = 0 in Figure 2 is due to the fact that its entropy is higher; it 
has twice as many low-energy excitations, corresponding to changing a 
single-spin S~ [ASil = 1, per unit volume. The shape of the lines in Figure 2 
can be obtained as an asymptotic expansion in e x p [ - J / k  B T]. (They are 
not drawn accurately in the figure.) 

The physics behind this picture is simple: owing to the Peierls' condi- 
tion, the low-temperature pure phases are nothing more than ground states 
in which there is a "sprinkling of droplets" of the other ground states. The 
contours surrounding these droplets represent excitations. At low tempera- 
tures the high energy cost of contours with large areas dominates the 
entropy and keeps them small and dilute. The Pirogov-Sinai theory may be 
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Fig. 1. T = 0 .  
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Fig. 2. 0 <  T<<J/k  8. 

ial 

thought of as an extension of the Peierls' argument for ferromagnetic Ising 
spins with nearest-neighbor interactions to systems in which the Hamilto- 
nian and ground states do not possess any symmetries. The rigorous 
mathematical proof of this fact is highly nontrivial and involves some 
powerful mathematics. 

This theory is, as far as we know, the only rigorous theory which deals 
with phase transitions in general lattice systems, but unfortunately it is not 
well known to physicists and metallurgists despite the simplicity of its 
concepts and the significance of its conclusions. The appearance of this 
book, based on lectures Sinai gave in Hungary in the late 1970s and 
updated with additional comments, should at least partially remedy this 
situation. We say partially because the book is not easy casual reading. The 
arguments are mathematically deep and require concentration--an effort 
the reader will not regret. We should also add that the book is extremely 
well organized and written. The reader interested only in the results and 
general arguments will find what he wants without going through all the 
details. 

The other three chapters, each one being fairly self contained, are 
devoted to the following topics: 

The first chapter deals with the description of an equilibrium system 
by a Gibbs probability distribution on its phase space [i.e., one of the form 
exp(- /?H),  where H is the Hamiltonian of the system]. In order to have a 
sharp notion of phase transition one is led to study systems with infinite 
spatial extension (the so-called thermodynamic limit). This introduces vari- 
ous problems since in the infinite system the Hamiltonian, being a sum of 
local interactions between the spins, is itself infinite. The solution of this 



654 Book Review 

problem, due to Dobrushin, Lanford, and Ruelle, is first to consider the set 
of all Gibbs distributions in all finite volumes V with all possible boundary 
conditions (b.c.), i.e., fixed configurations outside V. Then a probability 
distribution on the phase space of the infinite system is a Gibbs state (i,e., 
describes a situation of thermal equilibrium) if, for any finite V, its 
conditional probability distribution, given a configuration outside V (a 
b.c.), is the Gibbs distribution inside V with these b.c, Sinai introduces this 
fundamental concept and illustrates it with many examples. He discusses in 
detail the problem of the existence of these distributions with a prescribed 
system of conditional probabilities and lists some of their general proper- 
ties. 

The third chapter considers the situation where the set of spin values is 
no longer finite but is a space on which a continuous group acts, e.g., the 
classical Heisenberg model. Now, owing to the continuous symmetry, new 
phenomena occur. In particular, any phase transition is accompanied by 
long-range correlations between the spins. The absence of symmetry break- 
ing in two dimensions and the existence of spontaneous magnetization in 
three dimensions are discussed. The Kosterlitz-Thouless transition is not. 

Finally, Chapter 4 presents a rigorous renormalization group analysis 
of Dyson's hierarchical model. Again, the mathematical analysis is far from 
trivial but is carefully explained. 

This book is highly recommended for researchers and graduate stu- 
dents with an interest in rigorous results. It can also be used for an 
advanced graduate course in (mathematical) statistical mechanics. It is the 
best introduction to the work being done at the present time, both East and 
West, on various extensions of the Pirogov-Sinai theory, e.g., to cases 
where there is an infinite degeneracy of the ground state and to continuum 
fluids. 

2. "Ergodic theory is a powerful amalgam of methods used for the 
analyses of statistical properties of dynamical sys tems. . ,  the problems of 
ergodic theory now interest not only the mathematician, but also the research 
worker in physics, biology, chemistry, etc." Thus begins the preface to this 
long and (by many) long-awaited book by Cornfeld, Fomin, and Sinai. We 
put the last part of the quote in italics since most nonmathematicians trying 
to understand the complicated behavior of nonlinear dynamical systems 
(which is more or less everything in the universe) hardly think that they are 
dealing with problems in ergodic theory. In fact many of them still think of 
ergodic theory as something invoked (like a credo or litany) in the first 
session of a course on statistical mechanics to justify the use of the 
microcanonical ensemble for isolated classical systems with given total 
energy. Like Moliere's gentleman, however, they have been talking prose all 
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the time. Their problems are very much the subject of ergodic theory and 
they can benefit much from its study. 

In the description of ergodic theory given above the word "statistical" 
is crucial. There is always some stationary probability measure which 
determines what is significant and what is not. When, as usually happens, 
there are many stationary measures, it is the scientist's job to choose the 
right one for the physical situation modeled by the dynamical system. 
While the search for stationary measures is part of ergodic theory, the real 
mathematical fun begins after one has been chosen. Mathematical ergodic 
theory has undergone considerable growth and renewal in the last 25 years. 
Links have been developed with several branches of mathematics: probabil- 
ity theory, of course, but also group theory and number theory. There exist 
many books devoted to specific aspects of ergodic theory or to the general 
theory. However, none of them cover, to the extent done in this book, both 
the numerous applications and the variety of existing techniques. 

The method followed by the authors is to start with examples and 
applications. The first chapter introduces the basic definitions (ergodicity, 
mixing, unitary operators associated to measure preserving transforma- 
tions) and the main classical theorems (Birkhoff-Khinchin ergodic theo- 
rem, Krylov-Bogoliubov theorem on the existence of an invariant mea- 
sure). Then come various special cases: Hamiltonian mechanics, transla- 
tions of the torus, homeomorphisms of the circle, endomorphisms of 
compact groups, billiards, continued fractions, Gaussian stochastic pro- 
cesses, ideal gases, etc. Ergodic properties of these systems are discussed 
and the richness of the theory is displayed by these examples. 

In the second part of the book one finds some general results of 
ergodic theory. The Kolmogorov-Sinai entropy is introduced and a proof is 
given of Ornstein's result on the isomorphism of Bernoulli shift with equal 
entropy. 

The third part is devoted to the spectral properties of the unitary 
operators associated to measure-preserving transformations. It contains the 
yon Neumann theory on ergodic automorphisms with pure point spectrum: 
the set of eigenvalues determines these automorphisms up to isomorphisms. 
The spectral theory of K-automorphisms and of Gaussian stochastic pro- 
cesses is also to be found there. 

Finally, in the fourth part, the authors discuss approximation tech- 
niques of general dynamical systems by periodic ones. This is a topic of 
much current interest and is highly recommended to those doing numerical 
studies of dynamical systems. 

While the book is generally well written, it is not exactly easy reading. 
It is therefore helpful that different sections are relatively autonomous, 
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which facilitates browsing. It is likely to become a standard reference for 
everyone in the field. 
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